Documentation for make_env
src.pcgym.pcgym.make_env
Bases: Env
__init__(env_params)
Initialize the environment with given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env_params
|
dict
|
Environment configuration parameters including model selection, spaces, simulation parameters, constraints, and custom functions. |
required |
reset(seed=0, **kwargs)
Reset the environment to its initial state.
This method resets the environment's state, time, and other relevant variables. It's called at the beginning of each episode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed
|
int
|
Seed for random number generator. |
0
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[array, dict]
|
A tuple containing: - numpy.array: The initial state observation. - dict: Additional information (e.g., initial reward). |
step(action)
Perform one time step in the environment.
This method takes an action, applies it to the environment, and returns the next state, reward, and other information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
action
|
array
|
The action to be taken in the environment. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[array, float, bool, bool, dict]
|
A tuple containing: - numpy.array: The next state observation. - float: The reward for the current step. - bool: Whether the episode has ended. - bool: Whether the episode was truncated. - dict: Additional information about the step. |
con_checker(curr_state, inputs)
Check if any constraints are violated for the given states.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_states
|
list
|
List of state or input names to check. |
required |
curr_state
|
list
|
List of corresponding state or input values. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if any constraint is violated, False otherwise. |
constraint_check(state, input)
Check if any constraints are violated in the current step.
This method checks both state and input constraints, as well as any custom constraints defined by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
array
|
The current state of the system. |
required |
input
|
array
|
The current input (action) applied to the system. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if any constraint is violated, False otherwise. |
get_rollouts(policies, reps, oracle=False, dist_reward=False, MPC_params=False, cons_viol=False)
Generate rollouts for the given policies.
This method simulates the environment for multiple episodes using the provided policies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
policies
|
dict
|
Dictionary of policies to evaluate. |
required |
reps
|
int
|
Number of rollouts to perform. |
required |
oracle
|
bool
|
Whether to use an oracle model for evaluation. Defaults to False. |
False
|
dist_reward
|
bool
|
Whether to use reward distribution. Defaults to False. |
False
|
MPC_params
|
bool
|
Whether to use MPC parameters. Defaults to False. |
False
|
cons_viol
|
bool
|
Whether to track constraint violations. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[policy_eval, dict]
|
A tuple containing: - policy_eval: The policy evaluator object. - dict: Data from the rollouts. |
plot_rollout(policies, reps, oracle=False, dist_reward=False, MPC_params=False, cons_viol=False, save_fig=False)
Generate and plot rollouts for the given policies.
This method simulates the environment for multiple episodes using the provided policies and plots the results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
policies
|
dict
|
Dictionary of policies to evaluate. |
required |
reps
|
int
|
Number of rollouts to perform. |
required |
oracle
|
bool
|
Whether to use an oracle model for evaluation. Defaults to False. |
False
|
dist_reward
|
bool
|
Whether to use reward distribution for plotting. Defaults to False. |
False
|
MPC_params
|
bool
|
Whether to use MPC parameters. Defaults to False. |
False
|
cons_viol
|
bool
|
Whether to track constraint violations. Defaults to False. |
False
|
save_fig
|
bool
|
Whether to save the generated figures. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[policy_eval, dict]
|
A tuple containing: - policy_eval: The policy evaluator object. - dict: Data from the rollouts. |